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ABSTRACT 

Advocates of “causal” indicator measurement have argued that adverse childhood experiences 

should form a latent adversity construct that is then linked to health outcomes. We contend this 

proposal rests on a mistaken premise: common factor models merely decompose covariance and 

do not assume that an unobserved entity causes its indicators; causal interpretations require 

design features, not arrow direction. Crucially, reflective models already realize the 

representational goal formative advocates seek, quantifying information loss through residual 

variances. Besides, pure formative blocks are not locally identified and must compete to explain 

the same shared variance, inflating standard errors. In contrast, reflective models are locally 

identified and leverage the interdependence of adverse childhood experiences. Taken together, 

these points reveal formative factors are either disturbance-free composites or identified by their 

reflective anchors, whereas reflective models provide a fully identified and testable measurement 

model.
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The False Allure of “Causal” Indicator Models 

Researchers have long debated the relative merits of formative causal indicator versus 

reflective measurement models1-4. Notably, over the past decade, causal indicator models have 

gained traction across disciplines where constructs are viewed as composites of distinct causal 

influences. For instance, a recent recommendation encourages developmental scientists to model 

adverse childhood experiences (ACEs) with causal indicators, on the grounds that this approach 

can yield more precise stress profiles and enhance translational utility for both patients and 

clinicians5. At first glance, the proposal seems reasonable: specify models in which discrete 

stressors create adversity, then relate that construct to downstream health. After all, that is what 

theory dictates. However, a closer look reveals that common factor models are often 

misconstrued as presuming the latent factor is a cause of its indicators, when in fact the model 

can be viewed more neutrally, understood as simply a covariance decomposition, without any 

assumption that an unobserved entity causes its indicators. Moreover, contrary to what might be 

assumed, reflective models instantiate representational measurement — arguably the central 

compelling feature of formative approaches, and the type of measurement being advocated for by 

proponents of causal indicator models — better than formative models. 

Arrow Illusions: Covariance Without Causation 

Although path diagrams have become the lingua franca of structural equation modeling, 

their graphical conventions — especially the unidirectional arrows streaming from a latent factor 

toward its indicators — inadvertently nurture the notion that common factor models presume a 

literal causal flow from an unobserved construct to measured indicators. Indeed, as previously 

summarized6, reflective and formative measurement models are often described using causal 

language5,7-13. However, the arrows in a path diagram of a common factor model merely encode 
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a set of covariance restrictions: they remind the reader which elements of the loading matrix are 

freely estimated and which remain fixed, nothing more. Render the same model in compact 

matrix form and the suggestive imagery of directional influence disappears. The constraints now 

appear as algebraic relations among variances and covariances, making it clear the model is 

silent about causation.  

Formally, the common factor model specifies the vector of observed variables (e.g., ACE 

items) as: 𝑥 =  Λ𝑓 +  𝜀, 𝐸[𝑓] = 0, 𝑉𝑎𝑟(𝑓) = Φ, 𝑉𝑎𝑟(𝜀) = Ψ, 𝐶𝑜𝑣(𝑓, 𝜀) = 0, which implies 

the population covariance matrix: 

∑(𝑝×𝑝) = ΛΦΛ𝑇+ Ψ                                                           (1) 

Where 𝑥 is the p-dimensional vector of observed variables; Λ is the p × k loading matrix whose 

(𝜆𝑖,𝑗) entry represents how strongly observed variable 𝑥𝑖 associates with latent factor 𝑓𝑖; 𝑓 is the 

k-dimensional vector of latent factors, which are unobserved variables that summarize the 

covariation among the 𝑥’s; 𝜀 is the p-vector of unique (error or disturbance) terms, capturing 

variance in each 𝑥𝑖 not shared with the factors; 𝐸[𝑓] = 0 sets the factor means to zero for 

identification and convenience, 𝑉𝑎𝑟(𝑓) = Φ specifies the covariance matrix of latent factors, 

𝑉𝑎𝑟(𝜀) = Ψ is the matrix of unique variances, one per observed variable, and 𝐶𝑜𝑣(𝑓, 𝜀) = 0 

states the latent factors and unique errors are uncorrelated, ensuring common and unique 

variances are statistically separate (but these error covariances can be allowed to be free to some 

extent in some models).  

Under this specification the arrows in a path diagram merely encode the algebraic 

factorization ∑. The arrows do not test or assume that variation flows from the latent factors to 

the indicators in a temporal or causal sense. In fact, for every identified common factor model 

there exists an observationally equivalent formative model in which the arrows are reversed and 
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the same ∑ is reproduced14. What must hold is only the linear constraints embodied in Λ and Φ 

describe the second-moment structure of the data. For example, one can algebraically re-express 

the latent variable formatively as predicted by the indicators: 

f = 𝛾𝑇𝑥 + 𝜁                                                                (2) 

where f = the 1×1 (or more generally r×1) vector of latent factor scores, 𝛾𝑇= the transpose of the 

p×1 vector of factor-score weights, 𝑥 = the p×1 vector of observed indicators (e.g., ACE items), 

and 𝜁 = the scalar (or r×1 vector) of residual error, where var(𝜁) is chosen so the total 𝑉𝑎𝑟(𝑓) 

matches Φ (thus, 𝜁 captures whatever part of the latent factor cannot be linearly predicted from 

𝑥), with weights equal to: 

𝛾 = (Λ𝑇Ψ−1Λ + Φ−1)−1Λ𝑇Ψ−1                                               (3) 

Substituting this formative expression back into the measurement equation generates the 

same ∑—hence the models are observationally equivalent. There is a brief R tutorial in 

Appendix A demonstrating this. However, notice that γ is derived from the parameter estimates 

of the reflective model (Λ, Ψ, Φ) and not independently identified from Σ. In fact, 𝛾 is the weight 

matrix for a traditional regression-based factor score (a.k.a. Thomson or Thurstone score)15,16:  

𝑓𝑇ℎ =  ΦΛ𝑇∑−1𝑥 = (Λ𝑇Ψ−1Λ + Φ−1)−1Λ𝑇Ψ−1𝑥                                (4) 

Indeed, factor scores are a formative re-expression of reflective parameters. Along similar lines, 

the ubiquitous unit-weighted sum score — often touted as a simple formative composite — is 

equivalent to a factor score from a highly constrained reflective model in which all loadings and 

residuals are fixed to one and zero, respectively17. Thus, what is presumed to be the simplest 

formative composite has a reflective counterpart.  

So, are factor scores formative or reflective? In practice, they are both: a formative score 

whose weights inherit their meaning from a reflective structure, and a reflective model whose 
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estimated scores are derived formatively. In this way, the formative-versus-reflective “cause-

versus-effect” debate begins to dissolve, revealing two sides of the same covariance-analytic 

coin. Both the reflective and its mirror-image formative model are simply alternative, 

observationally equivalent factorizations of ∑, so any lingering sense of causal direction comes 

from us — not from the model.  

Symmetry Shattered: The Reflective–Formative Divide 

Extending the same notation to a model where arrows point from “causal” indicators to 

latent factor(s), the model-implied covariance is: 

∑(𝑦×𝑦) = Λ(Γ∑𝜉𝜉Γ𝑇 + Φ)Λ𝑇+ Ψ                                             (5) 

Where Γ = k × q matrix of regression coefficients that quantify the associations of the q-

dimensional vector of exogenous variables 𝜉 on the k-dimensional vector of latent factors, where 

each element represents the expected change in the latent factor given a one-unit increase in the 

exogenous variable 𝜉𝑗 , when the other exogenous variables equal zero, and ∑𝜉𝜉  is the 𝑞 × 𝑞 

covariance matrix of the exogenous variables, which is known and provides the second-moment 

information that, together with Γ, links the exogenous variables to variability in the factor(s).  

 Two facts immediately follow. First, setting the structural paths to zero (Γ = 0) collapses 

the model back to the familiar reflective model (equation 1), leaving identification fully intact 

because the factor remains anchored by its reflective loadings, and its variance remains estimable 

through Φ. Second, setting the loadings to zero (Λ = 0) while leaving the exogenous “causal” 

block in place produces an empty factor that never reaches the data: its variance and regression 

parameters are not identified. The analyst must either delete the factor (yielding a trivial 

independence or saturated model) or impose ad-hoc constraints — e.g., setting parameters by fiat 

— that technically identify the model yet leave the latent variable untethered. This asymmetry 
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underscores a weakness of “causal” indicator models: remove the formative block of exogenous 

variables (i.e., the “causal indicators”) and the measurement model remains fully identified. 

However, sever the reflective block and the entire measurement edifice collapses because the 

latent variable becomes under-identified14,18-20. 

Hence, what cannot be done in the mirror-image, pure formative specification of a 

reflective model is to estimate 𝛾 (equation 3) directly from ∑. The traffic of recoverability runs 

one way. A formative composite can be algebraically derived from a reflective solution — yet a 

“pure” formative block cannot return the favor by recreating the reflective loadings from the 

indicators alone. Until additional empirical anchors are added, the formative weights remain 

indeterminate and cannot be recovered from the data. Thus, you can “flip” the reflective model 

into a formative equation to yield observed scores, but you cannot identify the loadings for those 

scores independently of reflective parameters.  

This asymmetry exposes an implicit hierarchy: reflective models are identifiable, testable, 

and capable of generating formative analogues, whereas formative models remain dependent on 

reflective structure for identification they do not independently supply. Crucially, causality lies 

outside the statistical model and must be justified on separate substantive methodological 

grounds. Thus, while imbuing directional arrows with causal inference might be pedagogically 

convenient, the validity of an applied common factor model hinges on its ability to reproduce the 

observed covariance matrix, not on a metaphysical claim that the latent variable causes variation 

in the indicators.  

Composite by Fiat: The Day the Latent Went Missing  

One route to rescue a pure formative block from being under-identified is to fix all 

formative weights to theory-derived constants (usually 1) and set the disturbance variance Var(𝜁) 
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= 0. In that case, the factor is no longer a latent construct inferred from the data but rather a 

defined composite12 — a sum (or weighted sum) of its indicators. Because we have removed the 

stochastic disturbance, the composite’s variance is simply: 

𝑉𝑎𝑟(η)  = 𝛾𝑇∑𝑥𝑥𝛾                                                            (6) 

which is a direct algebraic function of the observed indicator covariances and the fixed weights. 

No reflective anchors to downstream outcomes are needed in this case because identification is 

achieved by assumption rather than empirically. This composite model no longer estimates a 

latent variance or residual — it computes a summary score whose statistical properties are 

wholly determined by ∑𝑥𝑥 and the researcher’s a priori γ.  

This defined composite12 approach might be appropriate when a researcher’s substantive 

theory truly posits that the construct is nothing more than a deterministic combination of its 

parts, and when measurement error — or, equivalently, the variability in measurements across 

samples — is negligible or unimportant. In such settings, however, researchers forfeit the ability 

to evaluate model fit, assess measurement invariance, or model residuals. Thus, defining an 

error-free composite is best reserved for cases where theory demands a deterministic index rather 

than a latent variable, and where there is no interest in making inferences about components of 

measurements that are constant across samples or occasions.  

In contrast, adverse childhood experiences do not constitute a scenario where an 

ignorable-error index is warranted. ACEs are heterogeneous and interdependent events21-23. 

Treating them as a unit‐weighted, error‐free sum tacitly assumes each experience has identical 

impact and measurement precision. A fixed γ=1 composite, therefore, lacks the flexibility to 

capture differential associations: it forces equal weight on each item, preventing the data from 

revealing which ACEs most potently measure adversity and predict outcomes. Consequently, a 
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defined composite not only misrepresents theoretical nuance but also precludes insights into the 

distinct pathways linking adversities to long‐term outcomes. Alternatively, if the analyst fixes the 

weights but wishes to freely estimate the latent (disturbance) variance, as advocated by 

proponents of “causal” indicator models5, the model remains under-identified unless it is 

anchored by (a) at least two reflective, error-permitting, indicators, (b) one perfectly reliable 

(error-free) reflective indicator, or (c) some other pair of non-redundant exogenous relations 

(e.g., multiple structural paths or group/mean constraints) are added to anchor it. 

Scaffolding Required: Parsimony Not Included 

“Causal” indicator models are more complex than their reflective counterparts — not 

because they necessarily estimate more free parameters, but because they demand extra 

modelling layers merely to become identified and interpretable. A reflective model is identified 

by the covariances the indicators share. Apart from a single scaling constraint, all loadings, 

residuals, and factor covariances can be recovered directly from that indicator block, and the 

model can be judged with the familiar battery of invariance tests. 

By contrast, a formative block supplies regression equations yet do not identify the latent 

variance, leaving the factor indeterminate until the analyst imposes additional constraints. As 

previously noted, one can fix formative weights, constrain the weights to sum to one while fixing 

the disturbance variance, or — more commonly — append at least two reflective 

outcomes12,14,24,25. Those anchors introduce new paths, residual correlations, and a disturbance 

variance that must be estimated jointly with the formative weights. The raw parameter count may 

be similar to, smaller than, or larger than the reflective analogue, but the complexity and 

compelled assumptions are invariably greater: researchers must defend choice of downstream 

markers, justify residual covariance specifications among indicators, and craft ad hoc diagnostics 
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because the usual global‐fit statistics (χ², CFI, RMSEA) remain computable for the whole 

structural equation model yet lack validated benchmarks for the formative block itself11,26. 

Formative weights are also conditional on the chosen reflective anchors and can shift — or even 

reverse sign — when those anchors change, especially under multicollinearity or small samples. 

Thus, even when the tally of free parameters is comparable, formative models impose greater 

identification hurdles, diagnostic uncertainty, and interpretational ambiguity than a reflective 

model. 

Competitive Inferential Interference 

Adverse childhood experiences tend to cluster empirically21-23 — for example, household 

substance use with domestic violence, parental separation with neglect, physical abuse with 

emotional abuse — and that interdependence usually does not interfere with measurement 

parameter inferences in a reflective model (e.g., the standard errors of loadings). However, in a 

formative model correlated indicators must compete to explain the same shared variance, 

inflating standard errors. A sample with a different co-occurrence profile will also yield a 

different weight pattern. Although reflective loadings are also sample-specific, high inter-item 

correlations do not jeopardize parameter inferences or conceptual clarity — despite the potential 

for factor collapse in the extreme — because reflective loadings do not partition variance among 

themselves. Moreover, interpreting a Γ-coefficient as the expected change in adversity produced 

by a one-unit increase in ACE j when all the other ACEs equal 0 is awkward because the 

standard “all-else-equal” regression interpretation does not map cleanly onto the reality of 

clustered childhood adversities. 

Modeling Sleight of Hand 
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As discussed above, pure “causal” indicator models are under-identified in isolation and 

inestimable. To make such models estimable, at least two auxiliary constraints are required—

often two reflective indicators24. In a stress framework, those reflective indicators are variables 

such as HPA‐axis dysregulation, neurocognitive impairment, allostatic load, or internalizing 

symptoms. Once they enter the model, the latent factor is shaped by the shared variance of those 

variables27 rather than by variation in the ACE items only, which then act as exogenous 

regressors. In a “causal” indicator model, labeling the factor “latent adversity” would be a 

category mistake: if memory and executive function serve as anchors, the construct should be 

labeled “latent cognition”; if BMI and waist circumference are used, “latent adiposity”, and so 

on. The ACE block itself lacks a standalone measurement component and thus cannot define the 

measurand. Indeed, “a latent variable with causal indicators cannot possibly derive its meaning 

from the causal indicators themselves”28. 

Alternative identification constraints, like fixing the latent variance or anchoring one 

x-to-f path at unity — can, in principle, dispense with reflective indicators as scaling devices. 

The hitch, however, is that those fixes still leave all remaining ACE weights, the latent mean, 

and the disturbance variance for the latent factor to be estimated conditional on the covariance 

matrix of the reflective block. In other words, even if one were to fix the scale in this way, the 

reflective outcomes that are hypothesized to be downstream of ACEs continue to exert leverage 

on the pattern of formative coefficients through the likelihood function. Therefore, the 

downstream markers do more than merely supply a metric; they co-determine the latent factor. 

Enter the Covariate Cavalry 

Including an exogenous block is warranted when theory or prior evidence suggests that 

variables outside the focal latent system — such as age, sex, race/ethnicity, or intervention 
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assignment — may account for variability in latent constructs or their observed indicators. By 

regressing the latent factor(s) on these covariates (and, where justified, on selected indicators), 

the analyst can test hypotheses about demographic or experimental group differences in latent 

variables, partial out nuisance variance that would otherwise inflate unexplained variance and 

reduce bias in structural paths among endogenous variables. The exogenous block should be 

specified only when the covariates are temporally and conceptually prior, are measured without 

serious error, and are not themselves mediators, colliders, or consequences of the latent 

constructs under study. Importantly, adding such a block does not convert the measurement 

portion (Λ & Ψ) into a causal model. The loadings that map latent factors onto reflective 

indicators remain covariance constraints, so the introduction of exogenous regressors should not 

be mistaken for evidence that latent factors are necessarily caused by those variables through a 

new “causal measurement” mechanism. 

When Arrows Tell Time 

Unidirectional arrows might merit causal interpretation when the model’s specification is  

tethered to information by the study design that distinguishes “before” from “after”, and the 

arrow conveys information about temporal direction. In a longitudinal model, for example, a path 

drawn from X at Time1 to Y at Time2 encodes a hypothesis that earlier variation in X helps 

predict later variation in Y over and above their autoregressive carry-over; because the variables 

are observed at different time points, the arrow corresponds with genuine temporal precedence, 

and its coefficient becomes a test of a putatively prospective effect. Similarly, in experimental or 

quasi-experimental designs, arrows emanating from a randomized treatment indicator (or a 

strong natural experiment) toward downstream outcomes inherit the study design’s exogenous 

shock: here, causal inference rests on the randomly assigned manipulation, not on the algebra of 
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the loading matrix. In both cases the graphical directionality is backed by study design features 

— temporal ordering, intervention, or an instrument that breaks reverse causation — so the 

arrow depicts more than a covariance constraint; it marks a falsifiable temporal or causal 

hypothesis whose validity can be probed through model fit, sensitivity checks, comparison to 

alternative models and, ideally, replication in independent samples. 

Although ACE items refer to events that (by definition) occurred years before their 

hypothesized outcomes, their temporal precedence does not license a causal reading of the 

arrows that point from those items to a latent adversity factor in a formative specification. 

Retrospective ACE reports are themselves susceptible to current mood, personality, socially 

desirable responding, recall bias, demand characteristics, passive gene-environment correlation, 

and other unmeasured variables, so the observed covariation between ACE checklists and 

downstream outcomes can reflect those potential confounders — not an unambiguous 

unidirectional effect of childhood events accumulating adversity. The formative arrows are fitted 

to the same cross-sectional covariance matrix as any reflective arrows and, therefore, inherit its 

non-causal nature. Plus, treating the formative arrows as causal adds nothing beyond what is 

already established outside the model (historical ordering of events) while risking over-

interpretation of coefficients.  

The Reflective Model as Representational Measurement 

 Formative models arguably appeal to the desire for a measurement paradigm in which 

measurands or latent variables function as representations or summaries of observed variables. 

That is, conceptually what is sought is a mapping: 

x ⇒ f 
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from the observed x variables to the latent factors f, where the f represent, summarize, substitute 

or “stand in” for the x. Here the arrow serves a mapping or “represent with” function from 

observed indicators x to the composite f, not any causal influence. Related, “if a construct is 

composed of its measures, such that the measures are considered parts of the construct, then it 

makes little sense to treat the relationships between the construct and measures as causal…and if 

one variable is part of another, then their association is a type of part–whole correspondence, not 

a causal relationship between distinct entities”6. 

With ACEs, for example, we might seek a variable f that summarizes the phenomena x 

we see as constituting ACEs. As explained elsewhere29, it is in fact reflective models, not 

formative models, that serve this representational function. The residual variances Ψ in a 

common factor model quantify the loss, in an information-theoretic sense, that one incurs by 

substituting f for x. Mathematically, whenever one substitutes one variable for another, there 

must be some amount of information loss in doing so (unless the one variable is perfectly 

colinear with the other), and the reflective common factor model quantifies this loss. If, for 

example, ACE phenomena do not cohere well in the sense of fitting a reflective model, 

informationally, it suggests the ACE phenomena are better off modeled individually, with more 

factors, or with some other representational model.  

 That reflective common factor models serve a representational role in measurement 

further underscores how arrows in path diagrams can be misleading if interpreted causally. A 

better interpretation of the path diagram arrows, perhaps, is that one variable “accounts for” 

another (i.e., summarizes variance). Put differently, path diagram arrows in structural equation 

models, particularly at the cross-section, are model constraints, not automatic causal directives. 

Again, issues of causality involving the “real world” variables of interest are distinct from the 



 15 

models we use to represent them, including the variables from measurement models we use to 

represent the individuals and families we study.    

A Causal Mirage on a Reflective Bedrock  

In sum, in a cross-sectional study, treating the directional arrows in a path diagram as a 

suggestion, assumption, or poof that the latent factor causes variation in the items commits a 

conceptual error parallel to equating correlation with causation. Just as a nonzero correlation tells 

us only that two variables share variance, the loadings of the common factor merely partition the 

covariance matrix into a common part (ΛΦΛ𝑇) and a specific part (Ψ). Inferring causality from 

the arrow direction in a corresponding path diagram is no more defensible than claiming a causal 

pathway from ice cream sales to crime rates because they co-occur on hot days. Causal 

interpretation requires additional design features, not the sign convention of the loadings in a 

statistical model.i 

The case for modeling adverse childhood experiences using a reflective model is decisive 

on both statistical and substantive grounds. First, model fit statistics cannot adjudicate whether 

ACE items “cause” a latent adversity construct — any formative block that reproduces the 

observed covariances will yield identical fit to a suitably specified reflective model, rendering 

model fit statistics moot. Second, securing identification for a purely formative specification 

requires additional constraints or auxiliary anchors, inflating analytic complexity and researcher 

degrees of freedom without delivering clear empirical insight. Third, the asymmetry in 

 
i It may also be helpful to clarify the claim that “common factor models feature a local independence 

assumption in that any correlation between the indicators is assumed to be due to the causal influence of 

the underlying latent factor”.5 Local independence is a modeling convenience, not a causal dictum. It 

states only that—conditional on the modeled factors—residual correlations are fixed to zero unless the 

analyst frees them. Any remaining covariance can be accommodated by allowing correlated residuals, so 

the assumption neither demands nor proves the latent factor is a causal source of the indicators’ 

association. 
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identification leans decisively toward reflection: a reflective factor persists when you drop 

“causal” indicator paths, whereas a formative construct vanishes without ad-hoc fixes or 

reflective anchors. Moreover, because ACEs naturally co‐occur21-23, reflective models harness 

this interdependence to produce stable scoring rules and directly quantify residual variance (Ψ), 

whereas formative weights vie to explain the same shared variance — amplifying standard 

errors. As shown in Appendix B, the correlations among ACE items from a highly cited study21 

are “meritorious” (.90 > KMO > .80) for a reflective factor analysis30. Finally, recognizing that 

estimated factor scores are themselves formative re‐expressions of reflective parameters 

dissolves a practical rationale for a separate formative model: if all that is needed is an 

aggregated composite, the reflective framework already offers fit statistics, invariance testing, 

and robust scoring without the fragility and interpretive ambiguity11 inherent to “causal” 

indicator specifications. 

If policy makers, researchers, and clinicians require a single, portable metric of childhood 

adversity, cumulative stress31, or cumulative advantage32, the reflective factor model offers the 

clearest path. A formative construct whose definition drifts with each study’s biomarker set or 

outcome battery risks re-introducing precisely the chaos that calls for standardization in the first 

place. Doing so does not deny that ACEs are causal (we believe they are); it simply keeps the 

ontological bookkeeping transparent. Researchers and other interested parties looking to 

measurements as representational summaries of a set of phenomena are better served by a 

reflective model anyway, theoretically and methodologically.  

Although this paper adopts a skeptical view of formative indicator models, particularly 

“causal” indicator models, our purpose is not to dismiss or disparage the scholars who have 

advanced them. Rather, by iterating existing critiques and introducing additional considerations, 
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we join a long line of researchers who have expounded objections to formative 

measurement1,3,4,6,33,34. We invite investigators weighing the use of formative models — 

particularly in the context of ACEs — to reflect on these objections, as we believe such scrutiny 

exposes the enticing yet ultimately false allure of “causal” indicator approaches.
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Appendix A 

# Simulate a one‐factor model dataset with 4 indicators 
set.seed(0.57721)        # for reproducibility 
n <- 1000                # number of observations 

 
# Specify true loadings for 4 indicators 
lambda <- c(0.8, 0.7, 0.6, 0.5) 

 
# Simulate latent factor f ~ N(0,1) 
f <- rnorm(n, mean = 0, sd = 1) 

 
# Simulate unique errors so that Var(x_i) = 1 
e1 <- rnorm(n, sd = sqrt(1 - lambda[1]^2)) 
e2 <- rnorm(n, sd = sqrt(1 - lambda[2]^2)) 
e3 <- rnorm(n, sd = sqrt(1 - lambda[3]^2)) 
e4 <- rnorm(n, sd = sqrt(1 - lambda[4]^2)) 

 
# Create indicators 
x1 <- lambda[1] * f + e1 
x2 <- lambda[2] * f + e2 
x3 <- lambda[3] * f + e3 
x4 <- lambda[4] * f + e4 

 
# Combine indicators into a data frame 
df <- data.frame(x1, x2, x3, x4) 

 
# Fit a one‐factor reflective CFA with lavaan 
# Run install.packages if lavaan package is not already installed 

# install.packages(‘lavaan’) 
library(lavaan) 
 

mod <- ' 
  f =~ x1 + x2 + x3 + x4 
' 
fit <- cfa(mod, data = df) 

 
# Examine fit statistics (out of habit) 
key_fits <- fitMeasures(fit, 
                        c("chisq","df","pvalue","cfi","tli","rmsea", 
                          "rmsea.ci.lower","rmsea.ci.upper","srmr")) 
key_fits 

 
# Extract parameter matrices 
Lambda <- inspect(fit, "est")$lambda   # 4 × 1 loadings 
Theta  <- inspect(fit, "est")$theta    # 4 × 4 residual‐variance 
Phi    <- inspect(fit, "est")$psi      # 1 × 1 latent‐variance 

 
# Compute the regression‐weight row vector  
# Gamma_t is 1 x 4: 
Gamma_t <- solve( 
  t(Lambda) %*% solve(Theta) %*% Lambda + solve(Phi) 
) %*% t(Lambda) %*% solve(Theta) 

 



 25 

 

# Ensure a 4 × 1 column vector  
gamma_vec <- as.numeric(t(Gamma_t))    # length‐4 vector 

 
# Compute factor scores via the linear predictor 
X <- as.matrix(df[, c("x1", "x2", "x3", "x4")])  # 1000 × 4 data matrix 
f_manual <- X %*% gamma_vec                      # 1000 × 1 predicted score 

 
# Save lavaan’s built‐in regression-based factor scores  
f_lavaan <- lavPredict(fit)                      # 1000 × 1 vector 

 
# Quantify agreement between “hand” calculated vs. default/automated scores 

correlation <- cor(f_manual, f_lavaan) 
mse         <- mean((f_manual - f_lavaan)^2) 

 
# Create Scatter Plot of Score Agreement 
plot(f_lavaan, f_manual, 
     xlab = "Thomson/Thurstone Factor Scores", 
     ylab = "Equation 3 Weighted x Scores", 
     main  = "Agreement of Scores") 
abline(0, 1, col = "blue", lwd = 2) 

 
legend("topleft", 
       legend = c( 
         sprintf("Correlation: %.2f", correlation), 
         sprintf("Mean squared error: %.2g", mse) 
       ), 
       bty = "n")  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Perfect correlation and approximately zero mean squared error demonstrates 

equation (4)  
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# Save implied covariance matrix from reflective model 
Sigma_hat <- fitted(fit)$cov  

 
# Solve Var(zeta) so that Var(f) = Gamma′SigmaGamma + Var(zeta) 
zeta_var  <- Phi - as.numeric(t(gamma_vec) %*% Sigma_hat %*% gamma_vec) 

 
# Re-fit models to Sigma_hat 
# (a) Reflective  
fit_ref <- cfa(mod, 
                sample.cov  = Sigma_hat, 
                sample.nobs = n) 

 
# (b) Formative 
form_mod  <- sprintf( 
  "f <~ %g*x1 + %g*x2 + %g*x3 + %g*x4\nf ~~ %g*f", 
  gamma_vec[1], gamma_vec[2], gamma_vec[3], gamma_vec[4], zeta_var 
) 

 
fit_form <- sem(form_mod, 
                sample.cov  = Sigma_hat, 
                sample.nobs = n) 

 
# Confirm identical implied covariance via the difference between the  

# matrices because fit statistics are not available for the formative  

 
max_diff <- max(abs(fitted(fit_ref)$cov - fitted(fit_form)$cov)) 
cat("Max absolute difference in implied variance-covariance matrix:", 

max_diff, "\n") 

 
# Max absolute difference in implied variance-covariance matrix: 1.474721e-08 

# The difference is essentially zero (to machine-level precision) 

 
# Create path diagrams of the reflective & formative models 
library(semPlot) 

 
# Set up 1×2 panels, inner margins for each plot, and extra outer margin  
par( 
  mfrow = c(1, 2),        # 1 row, 2 columns 
  mar   = c(0, 1, 0, 1),  # bottom, left, top, right (inner margins) 
  oma   = c(0, 0, 3, 0)   # outer margin: bottom, left, top, right 
) 

 
# First panel: reflective model 
semPaths( 
  fit_ref, 
  whatLabels     = "est", 
  layout         = "tree", 
  style          = "ram", 
  shapeMan       = "rectangle", 
  shapeLat       = "circle", 
  exoCov         = TRUE, 
  intercepts     = FALSE, 
  residuals      = TRUE, 
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  edge.label.cex = 1.25 
) 

 
# Second panel: formative model 
semPaths( 
  fit_form, 
  what           = "paths", 
  whatLabels     = "est", 
  layout         = "tree", 
  style          = "ram", 
  shapeMan       = "rectangle", 
  shapeLat       = "circle", 
  exoCov         = TRUE, 
  intercepts     = FALSE, 
  residuals      = FALSE, 
  edge.label.cex = 1.25 
) 

 
# Figure title 
mtext( 
  "Observationally Equivalent Reflective and Formative Models", 
  outer = TRUE,      # use the outer margin 
  cex   = 1,       # title size 
  line  = 1          # how far down from the top edge 
) 
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Appendix B 

# The following code creates a matrix of odds ratios (ORs) that report  
# relations among ten ACEs from a highly cited study. ORs are then     
# transformed to obtain Cohen’s d, which are then converted to 
# Pearson’s r, and the suitability of the data for a reflective factor 
# analysis is evaluated with Bartlett’s test and the Kaiser–Meyer–Olkin 
# (KMO) index.  

 
# Source of ORs: Dong, M., Anda, R. F., Felitti, V. J., Dube, S. R., 
# Williamson, D. F., Thompson, T. J., ... & Giles, W. H. (2004). The 
# interrelatedness of multiple forms of childhood abuse, neglect, and 
# household dysfunction. Child Abuse & Neglect, 28(7), 771-784. 

 
# ACE labels 
ace_names <- c( 
  "em_abuse","ph_abuse","sex_abuse", 
  "em_neglect","ph_neglect", 
  "par_sep","sub_abuse","mh_house","dom_viol","crime" 
) 

 
# Marginal prevalences (Table 1)   
p_i <- c( 
  em_abuse   = 0.102, 
  ph_abuse   = 0.264, 
  sex_abuse  = 0.210, 
  em_neglect = 0.148, 
  ph_neglect = 0.099, 
  par_sep    = 0.130, 
  sub_abuse  = 0.282, 
  mh_house   = 0.203, 
  dom_viol   = 0.241, 
  crime      = 0.060 
) 

 
# Initialize OR_mat 
ace_names <- c( 
  "em_abuse","ph_abuse","sex_abuse", 
  "em_neglect","ph_neglect", 
  "par_sep","sub_abuse","mh_house","dom_viol","crime" 
) 
OR_mat <- matrix(NA_real_, 10, 10, 
                 dimnames = list(ace_names, ace_names)) 
diag(OR_mat) <- 1 

 
# Helper function to fill [i,j] and [j,i] 
fill_or <- function(i, j, val) { 
  OR_mat[i, j] <<- val 
  OR_mat[j, i] <<- val 
} 

 
# Get ORs from Table 2   
fill_or("ph_abuse",   "em_abuse",    17.7) 
fill_or("sex_abuse",  "em_abuse",     3.0) 
fill_or("ph_neglect", "em_abuse",     6.3) 
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fill_or("em_neglect", "em_abuse",    12.8)  

 
fill_or("sex_abuse",  "ph_abuse",     2.4) 
fill_or("em_neglect", "ph_abuse",     5.1) 
fill_or("ph_neglect", "ph_abuse",     3.7) 

 
fill_or("em_neglect", "sex_abuse",    2.5) 
fill_or("ph_neglect", "sex_abuse",    2.5) 

 
fill_or("ph_neglect", "em_neglect",  12.2) 

 
fill_or("par_sep",    "em_abuse",     2.0) 
fill_or("sub_abuse",  "em_abuse",     2.9) 
fill_or("mh_house",   "em_abuse",     4.2) 
fill_or("dom_viol",   "em_abuse",     5.9) 
fill_or("crime",      "em_abuse",     2.7) 

 
fill_or("par_sep",    "ph_abuse",     2.2) 
fill_or("sub_abuse",  "ph_abuse",     2.1) 
fill_or("mh_house",   "ph_abuse",     2.8) 
fill_or("dom_viol",   "ph_abuse",     4.7) 
fill_or("crime",      "ph_abuse",     2.5) 

 
fill_or("par_sep",    "sex_abuse",    2.0) 
fill_or("sub_abuse",  "sex_abuse",    2.0) 
fill_or("mh_house",   "sex_abuse",    2.1) 
fill_or("dom_viol",   "sex_abuse",    2.5) 
fill_or("crime",      "sex_abuse",    2.4) 

 
fill_or("par_sep",    "em_neglect",   2.7) 
fill_or("sub_abuse",  "em_neglect",   2.5) 
fill_or("mh_house",   "em_neglect",   3.3) 
fill_or("dom_viol",   "em_neglect",   4.0) 
fill_or("crime",      "em_neglect",   2.2) 

 
fill_or("par_sep",    "ph_neglect",   2.6) 
fill_or("sub_abuse",  "ph_neglect",   3.0) 
fill_or("mh_house",   "ph_neglect",   3.4) 
fill_or("dom_viol",   "ph_neglect",   4.6) 
fill_or("crime",      "ph_neglect",   2.5) 

 
fill_or("sub_abuse",  "par_sep",      2.9) 
fill_or("mh_house",   "par_sep",      2.5) 
fill_or("dom_viol",   "par_sep",      3.9) 
fill_or("crime",      "par_sep",      2.6) 

 
fill_or("mh_house",   "sub_abuse",    2.7) 
fill_or("dom_viol",   "sub_abuse",    5.9) 
fill_or("crime",      "sub_abuse",    3.3) 

 
fill_or("dom_viol",   "mh_house",     2.8) 
fill_or("crime",      "mh_house",     3.3) 

 
fill_or("crime",      "dom_viol",     3.2) 
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# Sanity‐check 
if(any(is.na(OR_mat))) { 
  miss <- which(is.na(OR_mat), arr.ind=TRUE) 
  stop("Missing OR for pairs:\n", 
       paste0(rownames(OR_mat)[miss[,1]], "–", 
              colnames(OR_mat)[miss[,2]], collapse="\n")) 
} 

 
# View the fully populated OR_mat  
print(OR_mat) 

 
# Sanity check: diagonal should be 1 
diag(OR_mat) == 1 

 
# Now convert OR-->Cohen's d-->Pearson's r 
d_mat  <- log(OR_mat) * sqrt(3)/pi 
rho_or <- d_mat / sqrt(d_mat^2 + 4) 
diag(rho_or) <- 1 
rho_or 

 
# can force PD (not necessary) 
library(Matrix) 
rho_pd <- as.matrix(nearPD(rho_or)$mat) 

 
# Sample size 
n = 8629 

 
# Codes for Bartlett's test and KMO obtained from:  
# https://data-mining-tutorials.blogspot.com/2013/01/pca-using-r-kmo-# index-

and-bartletts-test.html 

 
# Bartlett’s test 
p    <- ncol(rho_pd) 
chi2 <- -(n - 1 - (2*p + 5)/6) * log(det(rho_pd)) 
df   <- p*(p - 1)/2 
pval <- pchisq(chi2, df, lower.tail = FALSE) 
cat("Bartlett’s test =", chi2, " df =", df, " p =", pval, "\n") 

 

#Bartlett’s test = 22759.71  df = 45  p = 0  

 
# KMO 
invR     <- solve(rho_pd) 
A        <- diag(p) 
for(i in 1:(p-1)) for(j in (i+1):p) { 
  A[i,j] <- A[j,i] <- -invR[i,j] / sqrt(invR[i,i] * invR[j,j]) 
} 
R2       <- rho_pd^2 
partial2 <- A^2 
kmo_overall <- sum(R2[upper.tri(R2)]) / 
  (sum(R2[upper.tri(R2)]) + sum(partial2[upper.tri(partial2)])) 
kmo_by_var <- sapply(1:p, function(i) { 
  sum(R2[i, -i]) / (sum(R2[i, -i]) + sum(partial2[i, -i])) 
}) 
names(kmo_by_var) <- colnames(rho_pd) 
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cat("Overall KMO:", round(kmo_overall,3), "\n") 
print(round(kmo_by_var,3)) 

 

# Overall KMO: 0.851  

#  em_abuse   ph_abuse  sex_abuse em_neglect ph_neglect    par_sep  sub_abuse  

#     0.800      0.824      0.936      0.828      0.864      0.857      0.852  

#  mh_house   dom_viol      crime  

#     0.908      0.873      0.884  

 
# Now, let's confirm suitability using tetrachoric correlations 
library(psych) 
tetra_mat <- matrix(NA_real_,  
                    nrow = nrow(OR_mat),  
                    ncol = ncol(OR_mat),  
                    dimnames = dimnames(OR_mat)) 

 
for(i in seq_len(nrow(OR_mat))) { 
  for(j in seq_len(i)) { 
    Pi <- p_i[i]; Pj <- p_i[j]; OR <- OR_mat[i,j] 
    a <-  OR - 1 
    b <- -(OR*(Pi+Pj) + 1 - Pi - Pj) 
    c <-  OR * Pi * Pj 

     
    roots      <- polyroot(c(c, b, a)) 
    real_roots <- Re(roots)[abs(Im(roots))<1e-8] 
    lower      <- max(0, Pi+Pj-1) 
    upper      <- min(Pi, Pj) 
    p11        <- real_roots[real_roots>=lower & real_roots<=upper][1] 

     
    p10 <- Pi - p11; p01 <- Pj - p11; p00 <- 1 - Pi - Pj + p11 

     
    tab <- matrix(round(c(p11, p10, p01, p00)*n), 
                  nrow = 2, byrow = TRUE, 
                  dimnames = list(c("1","0"), c("1","0"))) 

     
    # Extract the scalar tetrachoric from the list 
    tetra_r <- as.numeric(tetrachoric(tab, correct = FALSE)$rho) 

     
    tetra_mat[i, j] <- tetra_r 
    tetra_mat[j, i] <- tetra_r 
  } 
} 

 
diag(tetra_mat) <- 1 
tetra_mat 

 
# Bartlett’s test 
p    <- ncol(tetra_mat) 
chi2 <- -(n - 1 - (2*p + 5)/6) * log(det(tetra_mat)) 
df   <- p*(p - 1)/2 
pval <- pchisq(chi2, df, lower.tail = FALSE) 
cat("Bartlett’s test =", chi2, " df =", df, " p =", pval, "\n") 

 

# Bartlett’s test = 34295.43  df = 45  p = 0 
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# KMO 
invR     <- solve(tetra_mat) 
A        <- diag(p) 
for(i in 1:(p-1)) for(j in (i+1):p) { 
  A[i,j] <- A[j,i] <- -invR[i,j] / sqrt(invR[i,i] * invR[j,j]) 
} 
R2       <- tetra_mat^2 
partial2 <- A^2 
kmo_overall <- sum(R2[upper.tri(R2)]) / 
  (sum(R2[upper.tri(R2)]) + sum(partial2[upper.tri(partial2)])) 
kmo_by_var <- sapply(1:p, function(i) { 
  sum(R2[i, -i]) / (sum(R2[i, -i]) + sum(partial2[i, -i])) 
}) 
names(kmo_by_var) <- colnames(tetra_mat) 

 
cat("Overall KMO:", round(kmo_overall,3), "\n") 
print(round(kmo_by_var,3)) 

 

# Overall KMO: 0.833  

# print(round(kmo_by_var,3)) 

#  em_abuse   ph_abuse  sex_abuse em_neglect ph_neglect    par_sep  sub_abuse  

#     0.775      0.813      0.957      0.795      0.845      0.820      0.827  

#  mh_house   dom_viol      crime  

#     0.916      0.852      0.899  

 
# To formally assess the factor structure of ACE items, the raw data  
# should be obtained and analyzed. Nevertheless, the correlations among 
# the ACE items are sufficient to be considered "meritorious" for a 
# reflective factor analysis 

 


