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A B S T R A C T

Background: Social relationships are established determinants of health across the lifespan, yet the cumulative 
and multidimensional effects of sustained social advantage on biological aging remain poorly understood.
Methods: Drawing on data from 2117 adults in the Midlife in the United States (MIDUS) study, we used structural 
equation modeling to examine whether cumulative social advantage (CSA)—a latent construct encompassing 
social connection across familial, religious, emotional, and community domains—was associated with epigenetic 
aging, systemic inflammation, and neuroendocrine activity.
Results: Higher CSA was linked to slower epigenetic aging, particularly as indexed by GrimAge (β = − 0.09 to 
− 0.10, q < 0.001) and DunedinPACE (β = − 0.12, q = 0.010) clocks. CSA was also associated with lower levels of 
interleukin-6 (IL-6; β = − 0.11, q = 0.010). No significant associations were observed for urinary cortisol, 
cortisone, or catecholamines.
Conclusion: Sustained social advantage is associated with more favorable biological aging profiles, including 
slower epigenetic aging and reduced inflammatory signaling. These findings add to growing evidence that social 
resources are embedded in the physiological pathways that shape aging and health.

1. Introduction

Social relationships are robust determinants of health, functional 
capacity, and longevity, with strong and supportive networks linked to 
lower risks of morbidity and mortality, enhanced immune function, and 
improved cognitive outcomes (Holt-Lunstad et al., 2010; Yang et al., 
2016). Yet access to these relational resources is unevenly distributed, 
and advantages tend to accumulate over time, contributing to widening 
health disparities across the life course (Crystal et al., 2017; Ferraro and 
Shippee, 2009). Cumulative advantage theory offers a framework for 
understanding these disparities, proposing that social resources cluster 
and compound over time and are associated with increasingly divergent 
trajectories of health and aging (Dannefer, 2003; DiPrete and Eirich, 
2006).

Building on this framework, we conceptualize cumulative social 
advantage1 (CSA) as a multidimensional construct reflecting sustained 

access to social resources across four domains: family relationships, 
religious involvement, emotional support, and community engagement. 
Prior research has often examined individual social indicators—such as 
marital status or network size—in isolation (Holt-Lunstad, 2018; Yang 
et al., 2016). By contrast, CSA captures the breadth, persistence, and 
co-occurrence of social connection across multiple contexts. This 
construct has been empirically validated and linked to lower multi
morbidity, better functional health, and reduced mortality risk (Ong and 
Mann, 2025). Here, we extend this work by testing whether CSA is 
associated with biological aging, conceptualized as the progressive 
decline in molecular and physiological systems integrity. Drawing on 
the concept of biological embedding (Hertzman, 2012), we hypothesize 
that sustained social advantage becomes reflected in core regulatory 
systems linked to aging, including epigenetic, inflammatory, and 
neuroendocrine pathways.

Epigenetic aging, measured by DNA methylation clocks such as 
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1 Following cumulative advantage theory (Dannefer, 2003) and our recent empirical validation (Ong and Mann, 2025), we use “advantage” to emphasize that 
social relationships function as stratified resources that accumulate and compound over time, distinct from but parallel to socioeconomic stratification.
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GrimAge and DunedinPACE, captures cumulative molecular changes 
predictive of morbidity and mortality, and is sensitive to social adversity 
and relationship quality (Belsky et al., 2020; Horvath and Raj, 2018; 
Raffington and Belsky, 2022; Rentscher et al., 2023). Chronic low-grade 
inflammation (“inflammaging”), indexed by circulating cytokines and 
adhesion molecules such as IL-6 and TNF-α, contributes to cardiovas
cular, metabolic, and neurodegenerative disease and is shaped by 
social-environmental exposures (Franceschi and Campisi, 2014). 
Neuroendocrine function, assessed via overnight urinary concentrations 
of cortisol, cortisone, and catecholamines, reflects integrated hypo
thalamic–pituitary–adrenal and sympathetic–adrenomedullary activi
ty—systems highly responsive to psychosocial contexts (Hostinar et al., 
2014; Oster et al., 2016).

Our conceptual model integrates life course theory (Elder et al., 
2003), which emphasizes the cumulative accrual of relational resources; 
the weathering hypothesis (Forde et al., 2019; Geronimus, 1992), which 
describes how these accumulated resources are reflected in biological 
markers through differential wear and tear on stress-responsive systems; 
and the stress-buffering model (Cohen and Wills, 1985; Hostinar et al., 
2014), which posits that social resources attenuate physiological stress 
responses. Together, these perspectives predict that CSA should relate 
most strongly to biomarkers reflecting cumulative biological bur
den—such as DNA methylation–based aging indices and chronic in
flammatory markers—rather than short-term activation markers (e.g., 
urinary catecholamines, cortisol). Using data from the Midlife in the 
United States (MIDUS) study, a large national cohort with extensive 
psychosocial and biomarker data, we model CSA as a higher-order latent 
factor derived from 16 validated indicators, testing its associations with 
epigenetic aging, systemic inflammation, and neuroendocrine function.

2. Methods

2.1. Transparency and openness

This study used publicly available data from the Midlife in the United 
States (MIDUS) project. All survey instruments, codebooks, and docu
mentation are accessible via the MIDUS Colectica Portal (https://midus. 
colectica.org/). Analytic code is available from the corresponding 
author upon request. This work adheres to Level 2 of the American 
Psychological Association’s Transparency and Openness Promotion 
(TOP) Guidelines.

2.2. Participants and procedures

Data were drawn from two MIDUS biomarker cohorts: MIDUS-II 
(2004–2005) and the MIDUS Refresher (2011–2014), which include 
identical assessments of psychosocial, demographic, and biological 
characteristics (Love et al., 2010). MIDUS-II participants were recruited 
during a period of economic stability, while the Refresher cohort was 
enrolled following the 2008–2009 financial crisis. The analytic sample 
comprised 2117 adults with biomarker data. Participants were 55 % 
female, with a mean age of 55.07 years (SD = 12.71), and approximately 
75 % identified as White. All participants provided written informed 
consent, and study protocols were approved by institutional review 
boards at each participating institution.

2.3. Measures

Cumulative Social Advantage (CSA). Cumulative Social Advantage 
(CSA) was modeled as a second-order latent construct reflecting con
current access to social resources across four theoretically grounded 
domains: (1) religious and faith-based support (Ellison and George, 
1994). (2) parent-child relationship quality (Eisenberg et al., 2015), (3) 
community engagement (Berkman et al., 2000), and (4) extended 
emotional support (Cohen and Wills, 1985). Sixteen self-report in
dicators were selected based on prior evidence of measurement 

invariance and structural validity across sociodemographic groups (Ong 
and Mann, 2025).

Religious and faith-based support was measured using three scales: 
religious identification (e.g., “How important is religion in your life?”), 
religious practice (e.g., “How often do you read the Bible or other reli
gious literature”), and religious coping (e.g., “When you have problems 
or difficulties in your family, work, or personal life, how often do you 
seek comfort through religious or spiritual means such as praying, 
meditating, attending a religious or spiritual service, or talking to a 
religious or spiritual advisor?”). Parent-child relationship quality 
included four retrospective assessments: maternal warmth (e.g., “How 
much affection did she give you?”), maternal generosity (e.g., “How 
generous and helpful was she to people outside the family?”), paternal 
warmth (e.g., “How much time and attention did he give you when you 
needed it?”), and paternal generosity (e.g., “How sociable and friendly 
was he to people outside the family?”).

Community engagement was assessed using six scales reflecting both 
attitudinal and relational dimensions: social integration (e.g., “I feel 
close to other people in my community”), social actualization (e.g., “The 
world is becoming a better place for everyone”), social contribution (e. 
g., “I have something valuable to give to the world”), social acceptance 
(e.g., “I believe that people are kind”), friendship support (e.g., “How 
much can you open up to them if you need to talk about your worries?”), 
and positive relations with others (e.g., “I enjoy personal and mutual 
conversations with family members and friends”). Finally, extended 
emotional support was indexed by the number of hours per month 
participants reported receiving emotional support from parents, chil
dren, and other kin or friends. These responses were categorized into 
eight ordinal bins to minimize the potential leverage of large values and 
help normalize distributional skew.

In prior work, the CSA construct was conceptualized as a higher- 
order latent factor capturing the life-course accumulation of social 
connection and relational resources, indicated by two temporally 
anchored domains: (a) retrospective indicators of early parental rela
tionship quality that shape social competencies and internal working 
models, and (b) contemporary indicators of adult relational embedd
edness and resources (Ong and Mann, 2025). . This specification is 
theoretically grounded in cumulative advantage (Dannefer, 2003) and 
life-course perspectives on linked lives and developmental scaffolding 
(Elder et al., 2003) and aligns with attachment-based evidence that early 
caregiving organizes the acquisition and maintenance of adult re
lationships (Fraley et al., 2013; Ong and Mann, 2025). Modeling 
childhood and adult indicators within a single latent construct, thus, 
permits estimation of the combined influence of past and present 
embeddedness on profiles of biological aging.

Epigenetic Aging Clocks. Biological aging was assessed using 
whole-blood DNA methylation data processed through a panel of seven 
validated epigenetic clocks. These algorithms estimate either chrono
logical age or the rate of physiological aging by modeling methylation 
levels at specific cytosine–phosphate–guanine (CpG) sites.

The Horvath clock (Horvath, 2013) is a widely used cross-tissue 
predictor based on 353 CpGs and was trained to estimate chronolog
ical age across multiple cell types. Horvath2 (Horvath and Raj, 2018) 
updates this model using 391 CpGs optimized for blood and skin-derived 
samples, improving precision in those tissues. The Hannum clock 
(Hannum et al., 2013) is specific to whole-blood methylation and in
cludes 71 CpGs selected from adult cohorts.

To evaluate aging phenotypes more directly linked to morbidity risk, 
we included three health-optimized clocks. PhenoAge (Levine et al., 
2018) is derived from 513 CpGs weighted against a composite of clinical 
biomarkers (e.g., glucose, albumin, C-reactive protein) predictive of 
mortality and chronic disease. GrimAge (Lu et al., 2019, 2022) in
corporates DNA methylation-based surrogates for plasma proteins and 
cumulative smoking exposure to estimate time-to-death. Three versions 
were used: the original GrimAge, a re-implementation using the 
GrimAge2 framework, and an extended variant incorporating 
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methylation-based proxies for C-reactive protein and glycated hemo
globin. These clocks have demonstrated high prognostic value and are 
increasingly employed to investigate the biological embedding of social 
and environmental conditions. Finally, DunedinPACE (Belsky et al., 
2020) was included as a dynamic measure of biological aging rate. 
Unlike the other clocks, DunedinPACE estimates the pace of physiolog
ical decline by leveraging longitudinal methylation change, providing a 
temporal index of aging trajectory rather than a static age estimate.

Serum-Based Markers of Inflammation. Systemic inflammation 
was assessed using eight serum biomarkers indexing key components of 
immune activation, including cytokine signaling, endothelial function, 
and acute-phase response. All biomarkers were assayed in duplicate, 
with intra- and inter-assay coefficients of variation maintained below 
10 %. To address non-normal distributions, values were natural log- 
transformed prior to analysis.

Soluble E-Selectin and intercellular adhesion molecule-1 (ICAM-1) 
were measured as indicators of vascular inflammation (Shapiro et al., 
2010; Wayne Smith, 1997). C-reactive protein (CRP), a prototypic 
acute-phase reactant, was assayed using a particle-enhanced immuno
nephelometric method (BN II platform), enabling high-sensitivity 
detection of low-grade systemic inflammation (Sin et al., 2015). 
Interleukin-6 (IL-6), a central pro-inflammatory cytokine, was quanti
fied via two analytic platforms: high-sensitivity ELISA and electro
chemiluminescent multiplex assay (Meso Scale Discovery). Additional 
cytokines measured on the MSD platform included interleukin-8 (IL-8), a 
neutrophil chemoattractant involved in acute immune response; 
interleukin-10 (IL-10), an anti-inflammatory regulatory cytokine with 
immunoregulatory properties; and tumor necrosis factor-alpha (TNF-α), 
a key upstream activator of NF-κB–mediated inflammatory signaling 
(Hartanto et al., 2021). This biomarker panel provides a comprehensive 
profile of inflammatory activity relevant to aging and 
social-environmental exposures.

Urinalysis of Neuroendocrine Function. Neuroendocrine function 
was evaluated using overnight urine collection (~19:00 to 07:00), 
providing a cumulative hormonal output index over the sleep interval. 
This sampling window minimizes diurnal fluctuation and yields a stable 
index of HPA and SAM system activation. Cortisol and its metabolite 
cortisone were quantified via competitive radioimmunoassay following 
organic solvent extraction. Elevated concentrations reflect greater HPA 
axis activation. Catecholamines—norepinephrine, epinephrine, and 
dopamine—were measured using high-performance liquid chromatog
raphy with electrochemical detection, indexing SAM system activity 
over a 12-h interval. To account for variability in urine volume, cate
cholamine concentrations were normalized to total 12-h excretion mass. 
All hormone values were natural log–transformed prior to analysis to 
correct for right-skewed distributions.

Covariates. All models adjusted for demographic and socioeco
nomic variables selected a priori for their potential to confound associ
ations between CSA and biological aging indicators. Covariates included 
age (in years), sex (male vs. female), race/ethnicity (White, Black, 
Other), educational attainment (12-point ordinal scale), and log- 
transformed current household income (USD). These variables were 
treated as exogenous predictors—assumed to temporally precede both 
CSA and biological outcomes—and were included to block potential 
backdoor paths and minimize bias.

Each covariate is theoretically and empirically linked to both social 
and biological processes. Age is a primary determinant of both social 
network dynamics and physiological aging, influencing immunose
nescence and inflammatory profiles (Franceschi and Campisi, 2014). Sex 
shapes patterns of social interaction and is associated with baseline 
differences in glucocorticoid and cytokine levels, likely mediated by 
hormonal and genetic mechanisms (Klein and Flanagan, 2016). Race 
and ethnicity capture exposure to cumulative structural dis
advantage—such as systemic discrimination and unequal access to 
healthcare—which influence both social opportunity and stress physi
ology (Geronimus, 1992). Educational attainment and income reflect 

stratified access to material and psychosocial resources that affect both 
health behavior and biological risk processes (Adler and Newman, 
2002). Treating these covariates as exogenous minimizes bias due to 
confounding while avoiding over-adjustment for potential mediators or 
introducing collider bias (Schisterman et al., 2009).

2.4. Statistical analysis

Hypotheses were tested using structural equation modeling (SEM) 
implemented in the R package lavaan (Rosseel, 2012), which allows for 
simultaneous estimation of latent constructs and their associations with 
multiple observed outcomes. This approach is well-suited to modeling 
CSA as a second-order construct and testing its multivariate associations 
with biomarkers.

Measurement Model. First, a higher-order confirmatory factor 
analysis (CFA) was conducted to validate the hypothesized structure of 
CSA. Four first-order latent domains—religious and faith-based support, 
community engagement, parent-child relationship quality, and 
extended emotional support—were each estimated from their respective 
observed indicators. These domain-specific factors were then modeled 
to load onto a second-order latent construct representing CSA. Cross- 
loadings and inter-factor covariances were constrained to zero to 
impose a strictly hierarchical model, while residual covariances among 
theoretically related indicators were freely estimated (cf., Ong and 
Mann, 2025).

Structural Model. In the structural phase, each biological outcome 
variable was regressed on the second-order CSA construct, adjusting for 
a set of eight exogenous covariates: centered linear and quadratic age 
terms, sex (0 = female, 1 = male), race/ethnicity (dummy-coded for 
Black and Other; White as reference), educational attainment (12-point 
scale), log-transformed household income (USD), and cohort (0 =
MIDUS-II, 1 = MIDUS Refresher). Models were clustered at the family 
level to accommodate non-independence due to shared family IDs, and a 
robust sandwich estimator was used for the sampling covariance matrix. 
Estimation was performed using the robust maximum likelihood (MLR) 
estimator, which yields standard errors and fit indices robust to non
normality and unbalanced cluster sizes. Missing data were addressed 
using Full Information Maximum Likelihood (FIML), and all exogenous 
covariates were freely intercorrelated to fully specify their joint 
distribution.

Multiple Comparison Correction. To address multiple testing, we 
controlled the false discovery rate (FDR) across all 24 tests using the 
Benjamini–Hochberg (BH) procedure and report BH-adjusted p-values 
(q-values) (Benjamini and Hochberg, 1995). Coefficients with q < 0.05 
were deemed statistically significant, and for these we report false 
coverage rate (FCR)-adjusted, BH-selected confidence intervals 
(Benjamini and Yekutieli, 2005). For coefficients with q > 0.05, we 
display BH-ordered confidence intervals (βk ± z[1− αk/2] ×SEk

)
by ranking 

p-values across all tests and setting αk =

(
k
m

)

× 0.05, where m = 24 (the 

total number of tests) and k is the rank of the p-value.

3. Results

3.1. Descriptive statistics and Measurement Model

Descriptive statistics for sample characteristics, CSA indicators, and 
biomarker outcomes are presented in Tables 1 and 2. Bartlett’s test (χ2 
(190) = 12062.75, p < 0.001) and the Kaiser-Meyer-Olkin (KMO) test 
(0.77) revealed that the CSA indicators were suitable for factor analysis. 
Internal consistency across the 16 items was acceptable (α = 0.75; ω =
0.82), and confirmatory factor analysis (CFA) supported the proposed 
hierarchical structure. Model fit indices indicated strong global fit 
(χ2(90) = 363.31, CFI = 0.97, TLI = 0.96, RMSEA = 0.038 [90 % CI =
0.034, 0.042], SRMR = 0.040).
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Table 3 displays standardized loadings for the second-order struc
ture, including both: (1) the loadings of the higher-order CSA factor onto 
its four first-order domains, and (2) the loadings of those domains onto 
their constituent indicators. All direct and indirect loadings were sig
nificant after FDR correction (q < 0.001). Fig. 1 presents the proportion 
of variance each observed indicator contributed to the CSA construct. 
Indicators related to communal integration emerged as the most 
empirically salient, including social integration (18.5 %), positive re
lations with others (10.5 %), and social contribution (9.7 %). Additional 
contributors included social acceptance (7.7 %), paternal generosity 
(7.2 %), religious coping (6.9 %), and religious practice (6.8 %). 
Together, these findings validate the multidimensional structure of CSA 
while underscoring that communal, relational, and religious forms of 
engagement play a central role in defining the construct.

3.2. Socioeconomic covariates and biomarker outcomes

Covariate associations with biomarker outcomes are presented in 
Fig. 2, which depicts a heat map of standardized regression coefficients 
across the full biological panel. Age was the most robust and consistent 
correlate, showing significant positive associations with nearly all 
measures of epigenetic aging and inflammation (q < 0.001), including 
DunedinPACE, both GrimAge clocks, IL-6 (both assays), IL-8, and TNF-α. 
Quadratic age terms captured modest curvilinear effects, suggesting 
potential deceleration of epigenetic aging in later midlife.

Clear socioeconomic gradients also emerged. Higher educational 
attainment was associated with lower systemic inflammation and slower 
epigenetic aging, with multiple associations surviving FDR correction (q 
< 0.01 or q < 0.001). Fewer associations were observed for household 
income, which showed smaller and less consistent effects. Racial dis
parities were pronounced: Black participants exhibited accelerated 
epigenetic aging and elevated inflammatory activity, particularly for IL- 
6, TNF-α, and GrimAge, relative to White participants. Participants 
categorized as “Other race” showed smaller, more heterogeneous ef
fects. Sex differences generally favored women in epigenetic and 

neuroendocrine measures, although CRP levels were higher among 
women. Cohort differences between MIDUS-II and the Refresher sample 
were minimal after covariate adjustment.

3.3. Associations between CSA and biomarkers

Fig. 3 summarizes associations between CSA and 24 biomarkers 
spanning three domains: epigenetic aging, systemic inflammation, and 
neuroendocrine function. Higher CSA was consistently associated with 
more favorable biological profiles, though effect sizes varied. In the 
epigenetic domain, all seven DNA methylation clocks showed negative 
associations with CSA (β range ≈ − 0.01 to − 0.12), indicating slower 
molecular aging among more socially advantaged individuals. GrimAge 
(both generations) and DunedinPACE demonstrated the strongest and 
most consistent effects, remaining significant after FDR correction (q <
0.001 and q = 0.010, respectively).

A similar pattern emerged for systemic inflammation, with CSA 
showing negative associations across all cytokines and vascular adhe
sion markers (β ≈ − 0.01 to − 0.11). IL-6, assayed via two platforms, 
showed the most robust association with CSA and remained significant 
after FDR correction (q < 0.05). IL-10 and E-Selectin yielded non- 
significant associations, with confidence intervals overlapping zero 
and FDR-adjusted q-values >0.10.

In the neuroendocrine domain, CSA was unrelated to all five over
night urinary markers—cortisol, cortisone, norepinephrine, epineph
rine, and dopamine. Effect sizes were small, and FDR-adjusted 95 % 
confidence intervals encompassed the null for each marker. These 
findings suggest that CSA showed no significant associations with 
neuroendocrine function as indexed by overnight urinary markers, in 
contrast to its more robust associations with inflammatory and epige
netic markers of longer-term physiological regulation.

4. Discussion

This study provides evidence that cumulative social advantage 
(CSA)—operationalized as a multidimensional latent construct—is 
associated with slower biological aging and reduced systemic inflam
mation. Drawing on a large, population-based cohort and a compre
hensive panel of molecular, immunological, and neuroendocrine 
biomarkers, the findings extend the literature on the biological 
embedding of social conditions (Hertzman, 2012) by demonstrating 
consistent links between sustained social resources and physiological 
systems central to aging. Viewed through the lenses of life course (Elder 
et al., 2003), weathering (Geronimus, 1992), and stress buffering per
spectives (Cohen and Wills, 1985), the results suggest that accumulated 
social resources may be associated with sustained health benefits, 
potentially reflected in biological processes that evolve over years or 
decades. This integrative framework provides a foundation for inter
preting the domain-specific patterns observed in the present analyses 
and for refining mechanistic hypotheses about how social advantage 
becomes embedded in the body.

4.1. CSA and epigenetic aging

The strongest and most consistent associations were observed in the 
epigenetic domain. Higher CSA was significantly linked to slower bio
logical aging as indexed by both generations of GrimAge and by Dun
edinPACE—epigenetic clocks designed to capture mortality risk and the 
pace of biological aging (Belsky et al., 2020; Lu et al., 2019). These 
findings build on prior work suggesting that relationship quality and 
social support predict DNA methylation-based aging acceleration 
(Raffington and Belsky, 2022; Rentscher et al., 2023). Notably, the 
DunedinPACE results suggest that CSA may be associated with differ
ences in the accumulated biological burden and the tempo at which 
molecular aging unfolds. The pattern is consistent with models positing 
that social environments regulate the methylome through sustained 

Table 1 
Sample characteristics.

Characteristic n = 2117

Age (years) 55.07 (12.71)
Sex

Female 1162 (55 %)
Male 954 (45 %)
Missing 1(<0.1 %)

Race
White 1591 (75 %)
Black 375 (18 %)
Native American 39 (1.9 %)
Asian 15 (0.7 %)
Pacific Islander 2 (<0.1 %)
Other 86 (4.1 %)
Missing 9 (<0.1 %)

Level of Education
Grades 1-6 2 (<0.1 %)
Junior High School 17 (0.8 %)
Some High School 88 (4.2 %)
GED 31 (1.5 %)
High School Diploma 360 (17 %)
1–2 Years College 354 (17 %)
3–4 Years College 98 (4.6 %)
Associate’s Degree 186 (8.8 %)
Bachelor’s Degree 465 (22 %)
Some Graduate School 79 (3.7 %)
Master’s Degree 336 (16 %)
Doctoral Degree 97 (4.6 %)
Missing 4 (<0.1 %)

Annual Household Income (USD) 75,671 (61,964)
Missing 49 (2.31 %)

Notes. Means and standard deviations or frequencies and percentages are 
reported.
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modulation of stress and immune-related pathways (Epel and Prather, 
2018; Horvath and Raj, 2018).

4.2. CSA and immune aging

CSA was also associated with lower concentrations of interleukin-6 
(IL-6), a pro-inflammatory cytokine centrally implicated in chronic 
disease risk and mortality (Franceschi and Campisi, 2014). Although 
other inflammatory markers showed similar trends, IL-6 yielded the 
most consistent and statistically robust association after FDR correction. 
These findings align with evidence linking higher levels of social inte
gration to attenuated inflammatory activity (Holt-Lunstad, 2018; Yang 
et al., 2016). Given that chronic low-grade inflammation—or “inflam
maging”—is a key mechanism linking psychosocial adversity to 
aging-related disease (Franceschi and Campisi, 2014), the results sug
gest that CSA may be associated with more favorable long-term immu
noregulatory profiles.

4.3. CSA and neuroendocrine function

By contrast, CSA showed no significant associations with neuroen
docrine function as indexed by overnight urinary cortisol, cortisone, or 

catecholamines. These null findings may reflect limitations in mea
surement sensitivity. HPA and SAM axis outputs are characterized by 
high intraindividual variability and marked circadian dynam
ics—features that are only partially captured through integrated over
night sampling (Oster et al., 2016). It is also plausible that CSA may be 
related to stress-related biology primarily through slower-acting regu
latory systems—such as epigenetic and inflammatory processes—rather 
than transient endocrine fluctuations. To resolve these dynamics, future 
research should leverage high-frequency designs (e.g., diurnal cortisol 
profiling, ecological momentary assessment) capable of capturing 
within-day hormonal variability in response to social exposure.

5. Limitations and future directions

Several limitations merit consideration. First, the cross-sectional 
design limits causal inference. Although both CSA and biomarker data 
were drawn from MIDUS Wave 2, CSA measures were collected during 
the initial survey phase, and biomarker assessments occurred later 
during separate clinic visits, providing modest temporal separation be
tween predictor and outcome. This sequencing offers some protection 
against simultaneity bias, yet reverse causality remains possible—for 
example, individuals in poorer health may withdraw from social 

Table 2 
Descriptive statistics for focal study variables.

Variable n M Median SD Min Max Skew

Indicators of CSA
Religious Identification 2103 19.37 20.00 6.04 7.00 28 − 0.44
Religious Practice 2099 9.78 10.00 4.47 3.00 18 0.13
Religious Coping 2092 5.60 6.00 2.17 2.00 8 − 0.45
Social Integration 2100 14.57 15.00 4.10 3.00 21 − 0.49
Social Actualization 2099 12.53 13.00 4.07 3.00 21 − 0.13
Social Contribution 2100 16.22 17.00 3.53 3.00 21 − 0.61
Social Acceptance 2099 13.71 14.00 3.48 3.00 21 − 0.30
Friendship Support 2097 3.28 3.50 0.68 1.00 4 − 0.94
Positive Relations 2108 39.99 42.00 7.28 7.00 49 − 0.77
Maternal Affection 1854 3.08 3.29 0.72 0.86 4 − 0.81
Paternal Affection 1718 2.70 2.75 0.80 0.75 4 − 0.28
Maternal Generosity 1853 3.36 3.50 0.72 1.00 4 − 1.05
Parental Generosity 1714 3.23 3.50 0.81 1.00 4 − 0.83
Emotional Support - Child 2048 1.04 1.00 1.49 0.00 7 2.34
Emotional Support - Other 2057 1.01 1.00 1.11 0.00 7 2.70
Emotional Support - Parent 2053 0.63 0.00 1.13 0.00 7 3.24
Plasma Assays
IL6 2094 0.77 0.74 0.77 − 2.15 3.14 0.10
IL6 (MSD) 2092 − 0.16 − 0.22 0.69 − 2.81 4.98 0.99
IL8 2092 2.47 2.46 0.46 0.97 5.85 0.97
IL10 2092 − 1.40 − 1.47 0.64 − 3.91 4.72 2.17
CRP 2083 0.38 0.31 1.20 − 3.94 4.37 0.09
TNF-a 2092 0.72 0.70 0.35 − 1.17 3.67 0.69
E-Selectin 2093 3.63 3.65 0.51 − 2.41 5.18 − 1.08
ICAM-1 2093 5.55 5.57 0.42 1.03 8.11 − 1.03
DNA Methylation Clocks
Horvath 1309 55.46 55.60 11.12 25.34 107.27 0.06
Horvath2 1309 51.90 52.34 12.44 18.82 98.38 − 0.10
Hannum 1309 42.43 42.35 11.46 14.01 110.44 0.28
PhenoAge 1309 43.63 43.61 13.00 10.27 85.01 0.00
GrimAge (1st gen) 1309 52.64 52.79 11.13 22.50 104.59 0.07
GrimAge (2nd gen) 1308 62.67 62.39 10.74 33.01 94.14 0.04
GrimAge (1st gen v2) 1308 57.09 57.07 10.94 29.74 90.01 0.06
DunedinPACE 1309 0.99 0.98 0.14 0.53 1.45 0.30
Urine Assays
Cortisol 2101 0.05 0.23 0.90 − 3.96 3.66 − 1.11
Cortisone 2107 1.05 1.09 0.64 − 2.30 3.78 − 0.53
Norepinephrine 2116 0.54 0.53 0.84 − 3.51 4.90 0.48
Epinephrine 2070 − 1.85 − 1.93 1.05 − 6.21 3.18 0.48
Dopamine 2101 2.10 2.14 0.84 − 2.81 5.20 − 0.69
Norepinephrine (12 h) 2041 2.78 2.79 0.67 − 1.16 6.10 − 0.34
Epinephrine (12 h) 2077 0.64 0.42 1.15 − 2.30 5.32 1.53
Dopamine (12 h) 2027 4.37 4.45 0.74 − 0.98 9.19 − 0.52

Notes. n = number of observations. M = mean. SD = standard deviation. Min = minimum observed value. Max = Maximum observed value. Serum and urine assay 
values were log transformed to correct positive skew.
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relationships. Longitudinal analyses with repeated biomarker assess
ments, such as those available in future MIDUS Refresher waves, will be 
essential for establishing temporal precedence and testing mediation 
pathways.

In addition, even with extensive covariate adjustment, residual 
confounding is a concern. Unmeasured variables—such as early-life 
adversity, environmental exposures, or genetic predispositions—could 
shape both social conditions and biological aging (Adler and Newman, 

2002; Shonkoff et al., 2009). Richer contextual measures in prospective 
designs will help address these sources of bias and clarify the mecha
nisms linking CSA to biological outcomes.

A separate limitation concerns the measurement structure of CSA. 
Although the second-order model demonstrated good fit, variance 
decomposition indicated that communal and relational indica
tors—particularly social integration, social contribution, and positive 
relations with others—accounted for most of the variance, whereas 
dyadic emotional support from parents and children contributed 
comparatively little. This asymmetry suggests that CSA, as operation
alized here, disproportionately reflects individual differences in 
communal embeddedness rather than interpersonal intimacy. Dis
aggregating CSA into its constituent domains in future work could reveal 
domain-specific associations with biological aging (Rentscher et al., 
2023; Uchino, 2009).

Measurement constraints also extend to the neuroendocrine out
comes. The use of overnight urine collection, while practical for large- 
scale field studies, lacks the temporal resolution to capture dynamic 
hormonal patterns. More intensive protocols, such as serial saliva sam
pling or ambulatory hormone monitoring, may yield a clearer picture of 
how social advantage shapes endocrine regulation (Oster et al., 2016; 
Hostinar et al., 2014). Likewise, although the observed pattern of as
sociations is consistent with stress-buffering mechanisms operating over 
longer timescales, the absence of direct measures of stress exposure and 
reactivity limits our ability to assess these processes explicitly. Incor
porating such measures into longitudinal designs will be important for 
identifying the specific contexts in which CSA is most strongly associ
ated with indicators of physiological protection.

6. Conclusion

Cumulative social advantage emerges as a consistent and multidi
mensional predictor of more favorable biological aging profiles, 
including reduced systemic inflammation and decelerated epigenetic 
aging. These findings support the hypothesis that sustained access to 

Table 3 
Standardized estimates from the higher-order factor model of cumulative social 
advantage.

Factor Indicator λ (CI) Indirect λ on GF (CI)

GF F1 0.38 (0.27, 0.49) ​
F2 0.66 (0.52, 0.80) ​
F3 0.45 (0.36, 0.55) ​
F4 0.24 (0.15, 0.34) ​

F1 Religious Identification 0.79 (0.76, 0.82) 0.30 (0.23, 0.37)
Religious Practice 0.87 (0.85, 0.89) 0.33 (0.26, 0.41)
Religious Coping 0.88 (0.86, 0.89) 0.33 (0.26, 0.41)

F2 Social Actualization 0.36 (0.29, 0.44) 0.24 (0.18, 0.30)
Friendship Support 0.46 (0.41, 0.50) 0.30 (0.24, 0.37)
Social Acceptance 0.54 (0.49, 0.58) 0.35 (0.28, 0.42)
Social Contribution 0.60 (0.56, 0.65) 0.40 (0.32, 0.48)
Positive Relations 0.62 (0.59, 0.66) 0.41 (0.33, 0.50)
Social Integration 0.83 (0.78, 0.87) 0.55 (0.45, 0.65)

F3 Maternal Generosity 0.41 (0.35, 0.47) 0.19 (0.14, 0.23)
Maternal Affection 0.66 (0.57, 0.75) 0.30 (0.24, 0.36)
Paternal Affection 0.70 (0.64, 0.76) 0.32 (0.25, 0.39)
Paternal Generosity 0.75 (0.69, 0.80) 0.34 (0.28, 0.40)

F4 Emotional Support - Parent 0.33 (0.24, 0.43) 0.08 (0.04, 0.12)
Emotional Support - Child 0.56 (0.43, 0.69) 0.14 (0.08, 0.19)
Emotional Support - Other 0.78 (0.65, 0.91) 0.19 (0.12, 0.26)

Notes. λ = standardized factor loading. CI = confidence intervals. All direct and 
indirect loadings are statistically significant after adjustment for FDR (q-values 
<0.001).

Fig. 1. Variance Contributions to Cumulative Social Advantage. 
Notes. Each bar denotes the variance contribution (y-axis) of the observed indicator (x-axis) to the latent CSA factor variance. Vertical bars denote confi
dence intervals.
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diverse social resources is embedded in physiological systems that 
govern the pace of biological aging. By integrating theoretically 
grounded measures of social conditions with robust molecular and 
immunological biomarkers, this study advances understanding of how 
social advantage is associated with biological resilience. Future research 
should prioritize longitudinal and mechanistic designs to clarify how 
distinct dimensions of social integration influence the molecular archi
tecture of aging and identify pathways amenable to intervention.
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Fig. 2. Heat Map of Demographics, Socioeconomic Variables, and Biomarkers 
Notes. Standardized associations between sociodemographic characteristics and biomarkers of systemic inflammation, stress physiology, and biological aging. Each 
circle reflects a regression coefficient from multivariate models predicting biomarker levels (rows) from sociodemographic predictors (columns), adjusted for 
covariates. Color hue indicates direction (blue = negative; red = positive) and color saturation reflects strength of the association (darker = stronger). Circle size 
denotes FDR-adjusted significance thresholds. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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